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This equation indicates that the weighting coefficients for the high order 

derivative can be computed by the matrix multiplication of the weighting 

coefficients of the first order derivative. However, this equation is simple 

and involves more arithmetic operations as compared to equations (78 

and 79). We noted that the calculation of weighting coefficient by 

equation (80) involves N  multiplications and ( 1N ) additions, i.e., a 

total of ( 12 N ) arithmetic operations. Recurrence relationship (78) only 

involves two multiplications, one division, and one subtraction, i.e. a total 

of four arithmetic operations for calculation of each off-diagonal 

weighting coefficient, which is independent of the number of grid 

points N . The calculation of each diagonal weighting coefficient from 

equation (79) involves ( 1N ) subtractions. Thus, the number of 

arithmetic operations for equation (78) and equation (79) is substantially 

smaller than what is in equation (80). 

 

 Sample of typical grid distributions 

       Because the described equations obtained by using differential 

quadrature method are equivalent to one obtained by using quasi-

spectrum method, the choice of grid points have a great effect upon 

accuracy of results. There are two kinds of methods for choosing the 

mesh points. 

The uniform grid points are used in the first kind as follows:   

Type (I): By a uniform grid, we mean that the grid has the same sizes. 

Thus by 

                 setting    .,.........1112 ectxxxxxxx NNii    

               The coordinates of the grid points are chosen as  
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The zeros of orthogonal polynomials such as Chebyshev polynomials are 

taken as grid points in the second kind as follows: 

Type (II) : For this kind, the coordinates of the grid points are chosen as  
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     In this field, there are some contribution studies about the effect of 

grid spacing distribution on the numerical results that were obtained by 

DQ method. Quan and Chang (1989) compared numerically the 

performances of the often-used non-uniform meshes and concluded that 

the grid points originated from the Chebyshev polynomials of the first 

kind is optimum in all cases examined. Bert and Malik (1996) indicated 

an important fact that the preferred type of grid points changes with 

problems of interest and recommended the use of Chebyshev-Gauss-

Lobatto grid for structural mechanics computations. Maradi and Taheri 

(1998) also investigated the effect of various spacing schemes on the 

accuracy of DQ results for buckling application of composites. They 

provided insights into the influence of a number of sampling points in 

conjunctions with various spacing schemes.  Chen (1997) and Bert and 

malik (1996) have provided sensible explanations why a certain type of 

grid points is superior to the others in the computation of their problems. 

The details of properties of DQ weighting coefficient matrices for the 

determination and rank are given by Shu (2000), and we note from this 

reference that these properties can be derived from the matrices properties 

in algebraic subject. 

 

Exercise:  if weighting coefficients are desired for a range 10  x , then 

calculate the weighting coefficients matrices )1(

ikC  and )2(

ikC  for 5,4,3N  

grid points divided the above range. 



 3 

 

 Numerical methods to solve DQ resultant equations 

      It is very important to make simple review about the solution 

techniques, which are used to update the DQ resultant for the differential 

equations. In most applications of the DQ method to engineering and 

physics problems, which are governed by the partial differential 

equations, considering the second –order partial differential equation as 

follows: 
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In general, Equation (81) should be specified with proper initial and 

boundary conditions for the solution to a specific problem. By DQ 

method at all interior points of whole domain, the original problem, 

which is defined in equation (81) can be reduced 

to a set of N ordinary differential equations(ODEs) as 
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 for Ni ,.....,2,1 .(82)  

When 0
),(






t

xtu i , we can be able to obtain a system of linear algebraic 

equations. The solution of partial differential equations may not be 

possible to express in closed-form. Therefore, this solution function can 

be approximated by polynomial approximation. Rearranging equation 

(82) to obtain a set of ordinary differential equations as; 

                                   
 

   GuL
dt

ud
dq    ……………………………. ( 83) 

where  u is a vector representing a set of  unknown functional values at 

all interior points,  uLdq  is a vector resulting from DQ discretization,  G  

is a vector arising from the given initial and boundary conditions. For 

time-dependent problems, equation (83) constitutes standard form 

ordinary differential equations. The time derivative can be approximated 
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by explicit or implicit low order finite difference scheme. From equation 

(83), we can obtain a system of algebraic equations in the form 

                                 GuH     …………………………………… (84) 

where  u is a vector of unknown functional values at all the interior grid 

points given by  

          rT

MNNNMM uuuuuuuuuu ,,.....,,,.......,,.....,,,,.....,, 1,13,12,11,33,32,31,23,22,2   

and  G  is a known vector given by  

      rT

MNNNMM GGGGGGGGGG ,,.....,,,.......,,.....,,,,.....,, 1,13,12,11,33,32,31,23,22,2   

The dimension of the matrix  H  is ( 2N )( 2M ) by ( 2N )( 2M ). 

Equation (84) can be written alternatively as 

 

                    GDuuC      ……………………………………  ( 85 ) 

 

this equation is called Lyapunov matrix form and    DC , are matrices of 

weighting coefficients for the first and the second-order derivatives have 

the dimension ( 2N )( 2N ),( 2M )( 2M ) respectively. One can see 

that the dimensions of  C  and  D are very small compared with the 

dimensions of  H . To solve this system that is discritized by DQ method, 

one can adopt direct method or iterative method. To solve the ordinary 

differential equations that are given in equation (83 or 84), there are 

different explicit numerical schemes that are used to discritize these 

equations and compute the results, for example: Euler forward explicit 

scheme; this is the first order scheme given by   

                          nnn ftuu 1    …………………………………. (86) 

 

The solution techniques that we thought could be possibly used to solve 

the algebraic equations that are because of employing DQ method in 

governing equations are divided into two parts. The first part is named 

direct methods, and the second one is iterative methods. 
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 Direct methods  

     To solve algebraic equations included in equation (84), there are 

many standard methods, amongst of them, Gaussian elimination method, 

LU decomposition approach are used extensively. The details of these 

methods can be found in textbook of numerical analysis. These methods 

are very efficient when the dimension of the matrix is not large. However, 

when the number of grid points increases the dimension of the matrix will 

increase accordingly. Hence the problem of virtual storage will become 

critical;  

 

furthermore, the DQ discretization matrix tends to become ill-conditioned 

when the mesh size is large. This would lead to difficulties in obtaining 

the solution or even worse, reduce the accuracy of the solutions. The 

drawbacks of direct methods can be eliminated by using iterative 

methods. Some of these iterative methods have been used to solve the 

system of algebraic equations given in form of equation (84). 

 

 Iterative methods  

       If the matrix  H  in equation (84) is composed of two matrices  A  

and  P , then we can write it as  

                       H =  A +  P    …………………………………… (87) 

 

by rewriting equation (84) in terms of matrices  A  and  P , we obtain 

           

                             uPGuA   ……………………………… (88) 

 

The iterative expression for equation (88) can be written as 

 

                                  nnnn uAuPGuuA  1   …………... (89) 
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where n  represents iterative level and the right side sometimes is called 

the vector of the residuals. In practical applications, a relaxation factor   

is introduced on the right hand side of equation (89), and the final 

iteration expression becomes 

 

 

                  nnn RAuu 
 11       …………………………… (90) 

 

such that 

 

                                     nn uHGR   

 

Equation (90) is a general iterative expression for equation (84). By using 

different forms of  A , we can obtain different iterative expressions for 

equation (84). For the  

stability and convergence of iterative method the reader may consult the 

textbooks Smith (1978) and Rao (2002).  

 

Successive over-relaxation (SOR) iteration method: SOR iteration is 

used to improve the convergence speed of Jacobi method. It is noted that 

SOR is a point iteration method. The value of 1n

iu  can be evaluated, when 

the values of 1,.....,2,1,1  ikun

k
 is calculated. These new values at the 

iteration level ( 1n ) can then be used to compute the residuals. The 

residuals of SOR iteration are computed from 

                                            

                                         n

UD

n

L

n uHHuHGR )(1    

 

where  LH  is the lower triangular matrix with diagonal elements being 

zero,  UH  is the upper triangular matrix with  diagonal  elements  being  

zero, and   DH   is  the  diagonal matrix with elements being the diagonal 

elements of  H . It is noted that the elements of 
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 LH ,  UH , and  DH   are equal to those of  H  at the corresponding 

positions, that is 

 

                                         H = LH +  UH + DH  

 

The iterative expression of SOR method is the same as the following 

equation 
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 the n

iR  in the SOR method can be expressed as 
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SOR iterative methods for the Lyapunov system (2.20) to update the 

solution can be write as 
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with the residuals relation in the form 

           

                        )()( 11

UD

n

L

nn

UD

n

L

n DDuDuuCCuCGR   

 

where the matrices C’s and D’s are having the same defined matrices of 

H’s, which are mentioned above.  

Gauss-seidel iteration method: it is special case of SOR (successive 

over-relaxation) iteration when   is taken as 1. There are many iterative 

methods some are related with these methods and others are different like 

Jacobin method, Jacobin over relaxation iteration method, Richardson 

iteration method, Conjugate Gradient iteration method…etc.  

 

 

 

 


